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Definitions

Homogeneity

A material property is called z
homogeneous if it does not I x
change from point to point —

under coordinate

in the body [i.e., it is invariant /*_"‘ ‘/;, y
x
translation).

Isotropy

A material property is called isotropic
if it does not change with direction
(i.e., itis invariant under coordinate
rotation).

Constitutive Relations

The analysis of stress and strains - equations of
motion; and strain-displacement relationships
apply to any, regardless of the material properties.

Since the response depends on the material,
supplemental relations (constitutive relations)
representing the type of material are needed.

Constitutive relations are semi-empirical: based
on experimental observation.

Relations between stress components
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and strain components
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Definitions

Isotropy

A material property is called isotropic
if it does not change with direction
(i.e.. it is invariant under coordinate
rotation).

Elasticity

The material is called elastic if

its loading and unloading =
curves coincide.

Definitions
o
Elasticity
The material is called elastic if =
its loading and unloading
curves coincide. c
Linearity G

Refers to linear dependence of
stresses on strains.

Definitions
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* Nonlinear elastic response <
« single-valued relationship
between stresses and strains a

* Inelastic response
= time independent &
+ time dependent




Definitions

* Inelastic response
» time independent
« time dependent
(33

Generally. more than one material model is needed
for the entire stress-strain-temperature range of
interest.
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Generalized Hooke's Law

Generalized Hooke's Law
* For linearly elastic isotropic
material
= Linear [extensional) strain
in the x direction, £x

z associated
,}\y with
oy, 00 i
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Generalized Hooke's Law

Hooke's Law for One Dimensional Stress / Strain State

A,

where @ , £ = uniaxial mechanical
[

stress and strain
E = Young's modulus

Shearing strain in plane xy
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Generalized Hoolke's Law

Generalized Hooke's Law

where v = Poisson's ratio,
G = Shear modulus
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Generalized Hooke's Law
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* Two independent material st Strans
coefficients
E = Young's modulus
u = Poisson’s ratio
G = shear modulus
=E/2(1+u)
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* Anisotropic mechanical
properties
+ extensional and shear
effects are coupled
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® For linearly elastic isotropic materials

= Extensional strains are associated
with normal stresses

= Shearing strain in each of the
coordinate planes is associated
with the shearing stress on the
same plane
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Normal Shear
Stress

Stress

Isetropic

Anisotropic
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Generalized Hooke's Law

Comments on Generalized Hooke's Law
* Anisotropic mechanical Sirven seeet
properties
« extensional and shear
effects are coupled
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* For nonhonmgeneuus
materials, E and Vv are
functions of the
coordinates.




Generalized Hooke's Law

+ The relations shown apply for the case of strains
and stresses caused by mechanical loading [not
for thermal, magnetic and/or electric fields).

Adding the first three equations:

(ex+ e, *8) = -1'-'-Eg” (cut o, +0.)
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where K 3(1-20)] bulk modulus
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Strain Energy and Complementary

Strain Energy Density Functions

For elastic materials and uniaxial
stress state

ce=U+C[

U = strain energy density (strain o
energy per unit volume)

=fcrd8

e i energy per unit volume) eI =
";ZITC ofztc
C = complementary strain energy —
density (complementary strain € dG d ¥
energy per unit volume) 3 5

Generalized Hooke's Law
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= ?.JK (0ot Ot o0)
K = siea)
or (391)=3k(3")

which is a relation between the volumetric
strain and volumetric stress components.

where = bulk modulus

Strain Energy and Complementary

Strain Energy Density Functions

U = strain energy density (strain
energy per unit volume)

=fcrd8

C = complementary strain energy
density (complementary strain

Strain Energy and Comp]emenfary
Strain Energy Density Functions

From which
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* For linearly elastic materials G‘
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* For the case of pure shear - C u
linearly elastic materials >
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Strain Energy Density Functions

= For linearly elastic materials 1 C
= 1 -2 dﬂ'! 1
=1 52 -
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* For the case of pure shear - e
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Strain Energy and Comp!emenlary Strain Energy and Complementary

Strain Energy Density Functions Strain Energy Density Functions
* For the three-dimensional stress state, the strain
energy density, and the curnplementary strain
energy density are given by:
de, -
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Decomposition of Strain Enen;:{;y Density
into Volumetricand ™
Distortional Components

’ a8 'ty * The principal stresses and strains can be
1 decomposed as follows: principal
T | 1 I diractions faulll

Strain Energy and Complementary
Strain Energy Density Functions
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* Total strain energy and total
complementary stfrain energy are
given by:

= i \.._\___‘_V____,_,.- o
5 = ok volumetric  deviatoric
principal planes
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Decomposition of Strain Ene:jgy Density
into Volumetric an

Decomposition of Strain Ene:jgy Density
Distortional Components

into Volumetric an
Distortional Components

For linearly elastic materials

Analogously,
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Decomposition of Strain Enel;jgy Density

into Volumetric an
Distortional Components

Therefore,
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Decomposition of Strain Ene

herefore,

into Volumetric an

Distortional Components
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Thermal Strains and

Thermal Stresses

Hooke's Law for Dimensi ain
where
E is the total strain SiT CF il %
oLT is the thermal strain F ol

@ is related to the mechanical strain
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